skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Gaofeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Lasers with injected spin-polarized carriers show an outstanding performance in both static and dynamic operation. In addition to the intensity response of conventional lasers, without spin-polarized carriers, both intensity and polarization of light can be exploited for optical communication in spin-lasers. However, the polarization dynamics of spin-lasers under amplitude modulation has been largely overlooked. Here, we reveal, analytically and numerically, a nontrivial polarization response that accompanies the well-known intensity dynamics of a spin-laser under amplitude modulation. We evaluate the polarization and intensity response under the same amplitude modulation and further assess the capability of such a polarization response in digital data transfer with eye diagram simulations. Our results provide a more complete understanding of the modulation response in spin-lasers and open up unexplored opportunities in optical communication and spintronics. 
    more » « less
  3. null (Ed.)